

Prediction IncluDinG INactivity (PIDGIN) Version 3

	Release

	v0.1beta

	Date

	May 06, 2020

[image: license] [https://github.com/lhm30/PIDGINv3/blob/master/LICENSE] [image: betarelease] [https://zenodo.org/badge/latestdoi/142870938]

Author : Lewis Mervin, lewis.mervin@cantab.net

Supervisor : Dr. A. Bender

Contents

	Overview of PIDGINv3
	Introduction

	Contributing

	License

	Citing PIDGIN

	References

	Setup and Installation
	Required dependencies

	Install with Conda

	Filetree structure

	Usage and Examples
	Command Line Arguments

	Getting started

	Extended functionality

	Enrichment Predictions

	Developer Notes
	Warnings and Errors

	Contributing Code

	Documentation Usage

Overview of PIDGINv3

Introduction

Protein target prediction using Random Forests [http://scikit-learn.org/0.19/modules/generated/sklearn.ensemble.RandomForestClassifier.html] (RFs) trained on bioactivity data from PubChem [https://pubchem.ncbi.nlm.nih.gov/] (extracted 07/06/18) and ChEMBL [https://www.ebi.ac.uk/chembl/] (version 24), using the RDKit [http://www.rdkit.org] and Scikit-learn [http://scikit-learn.org/], which employ a modification of the reliability-density neighbourhood Applicability Domain (AD) analysis by Aniceto 1. This project is the sucessor to PIDGIN version 1 [https://github.com/lhm30/PIDGIN] 2 and PIDGIN version 2 [https://github.com/lhm30/PIDGINv2] 3. Target prediction with extended NCBI pathway and DisGeNET disease enrichment calculation is available as implemented in 4.

	Molecular Descriptors : 2048bit RDKit Extended Connectivity FingerPrints [http://www.rdkit.org/docs/GettingStartedInPython.html#morgan-fingerprints-circular-fingerprints] (ECFP) 5

	Algorithm: Random Forests [http://scikit-learn.org/0.19/modules/generated/sklearn.ensemble.RandomForestClassifier.html] with dynamic number of trees (see docs for details), class weight = ‘balanced’, sample weight = ratio Inactive:Active

	Models generated at four different cut-off’s: 100μM, 10μM, 1μM and 0.1μM

	Models generated both with and without mapping to orthologues

	Pathway information from NCBI BioSystems [https://www.ncbi.nlm.nih.gov/Structure/biosystems/docs/biosystems_about.html]

	Disease information from DisGeNET [http://www.disgenet.org/web/DisGeNET/menu/dbinfo]

	Target/pathway/disease enrichment calculated using Fisher’s exact test and the Chi-squared test

Details for sizes across all activity cut-off’s:

	
	Without orthologues

	With orthologues

	Distinct Models

	10,446

	14,678

	Distinct Targets [exhaustive total]

	7,075 [7,075]

	16,623 [60,437]

	Total Bioactivities Over all models

	39,424,168

	398,340,769

	Actives

	3,204,038

	35,009,629

	Inactives [Of which are Sphere Exclusion (SE)]

	36,220,130 [27,435,133]

	363,331,140 [248,782,698]

Full details on all models are provided in the uniprot_information.txt files in the ortho and no_ortho directories (to be downloaded)

Contributing

Development occurs on GitHub [https://github.com/lhm30/PIDGINv3].
Documentation on Readthedocs [http://pidginv3.readthedocs.io].
Contributions, feature requests, and bug reports are welcome.
Consult the issue tracker [https://github.com/lhm30/PIDGINv3/issues].

License

PIDGINv3 is released under the GNU Lesser General Public License version 3.0 [https://github.com/lhm30/PIDGINv3/blob/master/LICENSE] ([image: license] [https://github.com/lhm30/PIDGINv3/blob/master/LICENSE]).

Broadly, this means PIDGINv3 can be used in any manner without modification,
with proper attribution. Modification of source code must also be released
under [image: license] [https://github.com/lhm30/PIDGINv3/blob/master/LICENSE] so that the community may benefit.

Citing PIDGIN

To cite PIDGINv3, please reference either previous versions 2 3 or use [image: betarelease] [https://zenodo.org/badge/latestdoi/142870938].

References

	1

	Aniceto, N, et al. A novel applicability domain technique for mapping predictive reliability across the chemical space of a QSAR: Reliability-density neighbourhood. J. Cheminform. 8: 69 (2016) [image: aniceto_doi] [https://doi.org/10.1186/s13321-016-0182-y]

	2(1,2)

	Mervin, L H., et al. Target prediction utilising negative bioactivity data covering large chemical space. J. Cheminform. 7: 51 (2015) [image: mervin2015_doi] [https://doi.org/10.1186/s13321-015-0098-y]

	3(1,2)

	Mervin, L H., et al. Orthologue chemical space and its influence on target prediction. Bioinformatics. 34: 72–79 (2018) [image: mervin2018_doi] [https://doi.org/10.1093/bioinformatics/btx525]

	4

	Mervin, L H., et al. Understanding Cytotoxicity and Cytostaticity in a High-Throughput Screening Collection. ACS Chem. Biol. 11: 11 (2016) [image: mervin2016_doi] [https://doi.org/10.1021/acschembio.6b00538]

	5

	Rogers D & Hahn M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50: 742-54 (2010) [image: rogers_doi] [http://dx.doi.org/10.1021/ci100050t]

Setup and Installation

Development and documentation occurs on GitHub [https://github.com/lhm30/PIDGINv3].

PIDGIN is currently only compatible with Python 2.7.x.
It also has the following dependencies:

Required dependencies

	NumPy [http://http://www.numpy.org/]

	SciPy [https://www.scipy.org/]

	RDKit [http://www.rdkit.org]

	Scikit-learn [http://scikit-learn.org/]

	Standardiser [https://github.com/flatkinson/standardiser]

	python_utilities [https://github.com/sdaxen/python_utilities]

Install with Conda

Follow these steps on Linux/OSX:

	Download and install Anaconda2 for Python 2.7 from https://www.continuum.io/downloads

	Open terminal in Mac/Linux and run conda create -c rdkit -c conda-forge --name pidgin3_env python=2.7 rdkit scikit-learn=0.19.0 pydot graphviz standardiser statsmodels

	N.B. Rdkit may not import on some systems due to a bug. If this happens upgrade to the latest version of conda before creating the above environment using: conda update conda

	N.B. Installs the IMI eTOX flatkinson standardiser [https://github.com/flatkinson/standardiser] (replaces ChemAxon’s standardizer used in previous PIDGIN versions) and statsmodels for p-value correction in predict_enriched.py

	Now run: source activate pidgin3_env (This activates the PIDGINv3 virtual environment. N.B This is required for each new terminal session in order to run PIDGIN in the future)

	Navigate the directory you wish to install PIDGINv3 and in Mac/Linux terminal run git clone https://github.com/lhm30/PIDGINv3/ (recommended) or download/extract the zip from GitHub [https://github.com/lhm30/PIDGINv3] webpage (not recommended due to inability to pull updates)

	(10GB) Download and unzip no_ortho.zip [https://drive.google.com/file/d/1D-iHmdRncTOImh68B54mEHkUvo5CHJVk/view] (md5sum: af0fd520de846c3cddcaec74dad4241d) into the PIDGINv3 main directory (leave all subsequent files compressed)

	(optional 24GB) Models are also available when mapping data between orthologues, as in 1. N.B The files are 24GB and many models are based solely on orthologue data. To include this functionality, download ortho.zip [https://drive.google.com/file/d/1CijRrJaAxIFcRWZHX314NYUPBTIwMPG7/view] (md5sum: 8f4e4a76f1837613ec4a3dd501d55753) to the PIDGINv3 main directory and unzip ortho.zip [https://drive.google.com/file/d/1CijRrJaAxIFcRWZHX314NYUPBTIwMPG7/view] (leave all subsequent files compressed)

	N.B Depending on bandwidth, Step 5/6 may take some time

Filetree structure

Once the models are downloaded and the main zip uncompressed, you should find the
following filetree structure within the PIDGINv3 directory (located for this snippet at
$PV3) if both the optional orthologs (ortho) and models without orthologs (no_ortho)
files are used:

$PV3 tree -L 2
.
├── biosystems.txt
├── DisGeNET_diseases.txt
├── docs
│ ├── conf.py
│ ├── dev
│ ├── index.rst
│ ├── install.rst
│ ├── make.bat
│ ├── Makefile
│ ├── overview.rst
│ ├── substitutions.rst
│ └── usage
├── examples
│ ├── test2.smi
│ └── test.smi
├── LICENSE
├── nontoxic_background.csv
├── no_ortho
│ ├── ad_analysis
│ ├── bioactivity_dataset
│ ├── pkls
│ ├── training_log.txt
│ ├── training_results
│ └── uniprot_information.txt
├── no_ortho.zip
├── ortho
│ ├── ad_analysis
│ ├── bioactivity_dataset
│ ├── check_ad2.py
│ ├── check_ad.py
│ ├── pkls
│ ├── training_log.txt
│ ├── training_results
│ └── uniprot_information.txt
├── ortho.zip
├── predict_enriched.py
├── predict.py
└── README.rst

	1

	Mervin, L H., et al. Orthologue chemical space and its influence on target prediction. Bioinformatics. 34: 72–79 (2018) [image: mervin2018_doi] [https://doi.org/10.1093/bioinformatics/btx525]

Usage and Examples

To facilitate the use of PIDGINv3, examples of usage are provided below,
ordered by expected frequency of use and increasing complexity.

Sections

	Command Line Arguments
	List of available arguments

	Detailed explanations for the more complicated arguments

	Getting started
	Generating predictions for human targets

	Generating binary predictions

	Decreasing applicability domain (AD) filter

	Outputting the AD results

	Silencing the AD filter

	Combining model filters

	Extended functionality
	Generating transposed predictions

	Increasing trees and getting the standard dev. for input compounds

	Annotating predictions with known activity

	Enrichment Predictions
	List of available arguments

	Generating enrichment predictions

	More complicated example

	References

Command Line Arguments

PIDGINv3 uses a Command Line Interface (CLI) for all available functionality.

This tutorial assumes the PIDGINv3 repository is located at $PV3.

List of available arguments

To see all available options, run

$ python $PV3/predict.py -h
Usage: predict.py [options]

Options:
 -h, --help show this help message and exit
 -f FILE Input smiles or sdf file (required)
 -d DELIM, --smiles_delim=DELIM
 Input file (smiles) delimiter char (default: white
 space ' ')
 --smiles_column=SMICOL
 Input file (smiles) delimiter column (default: 0)
 --smiles_id_column=IDCOL
 Input file (smiles) ID column (default: 1)
 -o FILE Optional output prediction file name
 -t, --transpose Transpose output (rows are compounds, columns are
 targets)
 -n NCORES, --ncores=NCORES
 No. cores (default: 1)
 -b BIOACTIVITY, --bioactivity=BIOACTIVITY
 Bioactivity threshold (can use multiple split by ','.
 E.g. '100,10'
 -p PROBA, --proba=PROBA
 RF probability threshold (default: None)
 --ad=AD Applicability Domain (AD) filter using percentile of
 weights [float]. Default: 90 (integer for percentile)
 --known_flag Set known activities (annotate duplicates betweem
 input to train with correct label)
 --orthologues Set to use orthologue bioactivity data in model
 generation
 --organism=ORGANISM Organism filter (multiple can be specified using
 commas ',')
 --target_class=TARGETCLASS
 Target classification filter
 --min_size=MINSIZE Minimum number of actives used in model generation
 (default: 10)
 --performance_filter=P_FILT
 Comma-seperated performance filtering using following
 nomenclature: validation_set[tsscv,l50so,l50po],metric
 [bedroc,roc,prauc,brier],performance_threshold[float].
 E.g 'tsscv,bedroc,0.5'
 --se_filter Optional setting to restrict to models which do not
 require Sphere Exclusion (SE)
 --training_log Optional setting to add training_details to the
 prediction file (large increase in output file size)
 --ntrees=NTREES Specify the minimum number of trees for warm-start
 random forest models (N.B Potential large
 latency/memory cost)
 --preprocess_off Turn off preprocessing using the flatkinson (eTox)
 standardizer (github.com/flatkinson/standardiser),
 size filter (100 >= Mw >= 1000 and organic mol check
 (C count >= 1)
 --std_dev Turn on matrix calculation for the standard deviation
 of prediction across the trees in the forest
 --percentile Turn on matrix calculation for the percentile of AD

Detailed explanations for the more complicated arguments

SMILES options (-d / –smiles_column / –smiles_id_column)

PIDGINv3 interprets SMILES files (*.smi or *.smiles) using the conventional
OpenSMILES specification [http://opensmiles.org/opensmiles.html] §4.5), comprising a
first column of smiles separated by a white line () character and additional entries
as identifiers.

An example of such a file is included in the examples directory for the SMILES file named
test.smi, containing two molecules whose SMILES strings are defined as:

test.smi

COc1cc2c3CN4CCC[C@H]4[C@@H](O)c3c5ccc(O)cc5c2cc1OC CompoundID1
COc1cc2c3CN4CCC[C@H]4[C@@H](O)c3c5ccc(O)c(OC)c5c2cc1OC CompoundID2

The following arguments can alter this behaviour, if desired, to accomodate for different
file strcutures:

	-d (or --smiles_delim)

	--smiles_column

	--smiles_id_column

For example test2.smi contains a comma separated file whose first column is the ID and
SMILES in the second column.

test2.smi

Input1,CCCCOc1ccc2c3ccnc(\C=C\c4ccc(OC)cc4)c3n(CCCc5ccccc5)c2c1
Input2,COc1ccc(\C=C\c2nccc3c4ccccc4n(CCCc5ccccc5)c23)cc1
Input3,CCCCn1c2ccccc2c3ccnc(\C=C\c4ccc(OC)cc4)c13
Input4,COc1cc(\C=C\c2nccc3c4ccccc4[nH]c23)cc(OC)c1OC
Input5,COc1ccc(\C=C\c2c3c(cc[n+]2Cc4ccccc4)c5ccccc5n3CCCc6ccccc6)cc1
Input6,CCCCn1c2ccccc2c3ccnc(C)c13
Input7,Cc1nccc2c3ccccc3n(CCCc4ccccc4)c12
Input8,COc1ccc(\C=C\c2nccc3c4ccccc4[nH]c23)cc1
Input9,C(=C\c1nccc2c3ccccc3[nH]c12)/c4ccccc4
Input10,Cc1nccc2c3ccccc3[nH]c12

Thus the following command should be used when running any
commands:

$ python $PV3/predict.py -f test2.smi -d ',' --smiles_column 1 --smiles_id_column 0

Note

PIDGINv3 generates a warning message for any user input files which are neither
*.smi / *.smi or *.sdf, and will interpret any other file as a SMILES.

Transpose options (-t)

Transposes the prediction matrix from rows as targets and columns as compounds, to rows
are columns and columns as compounds.

Note

This will remove the metadata for each target (just the Uniprot name will be used)
to ensure only one column header is used.

RF probability theshold (-p)

The continuous probabilities from each model [p(activity)] for input compounds can be
converted into binary predictions at a user-specified threshold. The choice of required
p(activity) indicates a degree of confidence in predictions when binarizing probabilities.

Note

These probabilities are different from PIDGIN `version 2`_ in that they have not been
Platt-scaled, since this increased the number of false positives.

Applicability domain threshold (–ad / –percentile)

PIDGINv3 applies the reliability-density neighbourhood Applicability Domain (AD) analysis
by Aniceto et al., from: doi.org/10.1186/s13321-016-0182-y.

In this procedure, three parameters are calculated on a per-compound basis across the
training data for each target model. 1.) The nearest-neighbour similarity (sim)
[the largest Tanimoto Coefficient (Tc) similarity] to all data points for the target
model 2.) The RF probability of activity for the true label of the training compound (i.e.
the probability of being active for an active compound or the inactivity prediction for an
inactive compound) for the realised models (bias). 3.) The standard deviation
(std_dev) of this probability calculation, computed by the deviation of
predictions across all trees in the forest (this metric is considered a level prediction
certainty). These values are used to compute the weights (w) for each training
compound instance using the following equation:

Note

w = sim / (bias * std_dev)

Reliability increases with the increase of w, whereby higher reliability is associated
with higher similarity and low bias * std_dev. In practice, this procedure penalizes
high similarity which is associated with poor bias and precision observed in the trained
model.

At run time, the user specifies the cut-off for applicability domain (AD) percentile (n)
required for input compounds, using the following command:

	--ad

where int or (n) is a number between 0-100. In this case, the corresponding threshold
encapsulating n% of the pre-computed weights is calculated (i.e. n-th percentile of w
values). Weights are next calculated on a per-input compound basis by calculating the
nearest neighbour similarity to the training set and identifying the corresponding
(pre-computed) training compound bias and std_deviation for the near neighbour. The
corresponding percentile value for the input compound is calculated in the same manner as
above. A percentile value for the input compound above the user-specified percentile
threshold means the compound is considered within the applicability domain given the
user-specified conditions, and the corresponding probability of activity [p(activity)]
(or the binary prediction, if specified) is written in the prediction matrix. Conversely,
a weight below the percentile means an input compound is outside the AD, and in this case
an NaN (not available) is added to the output matrix.

Note

Higher confidence in the applicability domain (larger n) will increase
run-time or latency, since the code will quit looping through training upon
identifying a compound within the AD.

This feature can be effectively turned off by specifying the following command (not
recommended):

$ python $PV3/predict.py -f test2.smi -d ',' --smiles_column 1 --smiles_id_column 0 --ad 0

If a user would like to obtain a matrix comprising the percentile weights for each of the
input compounds, then the command line argument --percentile can be used.

Annotating known activity in ChEMBL or PubChem (–known_flag)

Known actives from ChEMBL and the inactives used from PubChem (possibly only a subset due
to undersampling) can be annotated using the command:

	--known_flag

Note

This requires the full matrix of similarities between input and training
compounds to be computed, and hence increases computational cost/latency.

Filtering the models by pre-calculated performance (–performance_filter)

Leave 50% of the random scaffold out (L50SO) and 50% of the ChEMBL publication (from which
the bioactivity data has been extracted) ID’s out (L50PO) was performed over 4-splits for
the training data as a validation set. The data was also split using time-series split
validation (TSSCV). The ROC, BEDROC, Precision-recall curve (PR-AUC) and Brier score were
computed over the folds and stored in the file training_log.txt in either the ortho or
no_ortho directories. This data can be incorporated into the output prediction file for
use as a desired performance value using the command:

	--performance_filter

where the user should supply comma-seperated performance filtering using following
nomenclature: validation_set[tsscv,l50so,l50po], metric[bedroc,roc,prauc,brier],
performance_threshold float].

For example the following command would provice predictions for the models with a BEDROC
of 0.5 during TSSCV:

$ python $PV3/predict.py -f test.smi --ad 0 --performance_filter tsscv,bedroc,0.5

Incorporating training log with predictions (–training_log)

The results from the above analysis can be appended to the target information columns to
provide detailed information to the user for filering. This will increase the file size
due to the significant amount of data. The column headings have the following meanings:

	MODEL_ID: ID of the model (nomenclature defined as 1. the Uniprot IDs annotated in the active/inactive training set, 2. if Sphere exclusion (SE) has been used and 3. an underscore followed by the threshold for activity)

	FINGERPRINT: Type of molecular fingerprint used

	N_TREES: Number of trees in the forest (differs depending on the tree optimisation)

	TRAIN_TIME_SEC: Time taken to train the RF model

	OUTOFBAG_ERROR_2DP: Out-of-bag (OOB) score for the RF (Sklearn calculated)

	N_SCAFFOLDS: Number of generic Murcko scaffolds within the chemistry of training data

	N_PUBLICATIONS: Number of ChEMBL publications across training data

Time-series split (TSSCV) validation, followed by the metric used and the
average/median/standard dev. over the 4 folds:

	TSCV_BEDROC_AVG_MED_STD

	TSCV_ROC_AVG_MED_STD

	TSCV_PRAUC_AVG_MED_STD

	TSCV_BRIER_AVG_MED_STD

	TSCV_TRAIN_SPLIT_SIZES

Leave 50% of publications out, followed by the metric used and the
average/median/standard dev. over the 4 folds:

	L50PO_BEDROC_AVG_MED_STD

	L50PO_ROC_AVG_MED_STD

	L50PO_PRAUC_AVG_MED_STD

	L50PO_BRIER_AVG_MED_STD

	L50PO_TRAIN_SPLIT_SIZES

Leave 50% of scaffolds out, followed by the metric used and the
average/median/standard dev. over the 4 folds:

	L50SO_BEDROC_AVG_MED_STD

	L50SO_ROC_AVG_MED_STD

	L50SO_PRAUC_AVG_MED_STD

	L50SO_BRIER_AVG_MED_STD

	L50SO_TRAIN_SPLIT_SIZES

The training data was then used to benchmark the realised models using all data, to obtain
the following metrics:

	TRAIN_V_TRAIN_BEDROC

	TRAIN_V_TRAIN_ROC

	TRAIN_V_TRAIN_PRAUC

	TRAIN_V_TRAIN_BRIER

The average and standard deviations across all probabilities of activity [p(activity)] for
each of the actives and inactivity [p(inactivity)] for all inactives were recorded for compared to the realised models:

	INACTIVES_AVG_STD_PRED

	ACTIVES_AVG_STD_PRED

Increasing the number of trees (–ntrees)

Thanks to the warm_start function of Scikit-learn RF’s, the number of trees in the
forests can be globally increased (at the cost of latency/increased CPU) using the
command:

	--ntrees

Turning off pre-processing (–preprocess_off)

PIDGINv3 implements a pre-processing feature which is turned on by default, to ensure all
input molecules are standardised using the flatkinson (eTox) standardiser
(github.com/flatkinson/standardiser), and that any molecules outside the applicability
domain of the models, defined by the chemical property filters imposed on
ChEMBL and PubChem training data [size filter 100 >= Mw >= 1000 / organic mol check
(Carbon count >= 1)] are removed. This functionality can be turned off to force PIDGINv3
to give unreliable predictions (in cases when the input space maybe outside the domain of
applicability or when molecules have been pre-standardised) using the following command:

	--preprocess_off

Output the standard dev. of predictions across the trees (–std_dev)

The standard deviation of the predictions across the trees can be output to the prediction
matrix (in place of the probability for activity), using the following command:

	--std_dev

Getting started

This tutorial assumes the PIDGINv3 repository is located at $PV3.

Generating predictions for human targets

In this example, we will work with the input file named test.smi in the examples
directory, which containins two molecules whose SMILES strings are defined as:

test.smi

COc1cc2c3CN4CCC[C@H]4[C@@H](O)c3c5ccc(O)cc5c2cc1OC CompoundID1
COc1cc2c3CN4CCC[C@H]4[C@@H](O)c3c5ccc(O)c(OC)c5c2cc1OC CompoundID2

The following code will generate the RF probabilities at 1μM for all human targets for
the input file:

$ python $PV3/predict.py -f test.smi --organism "Homo sapiens" -b 1

This script outputs the RF output from each of the Random Forest classifiers across the
targets for the all compounds into a probability matrix, where the columns are compounds
and the rows are targets.

If using --organism, it must be as specified in the uniprot_information.txt and
if using spaces enclosed by quotes (“”) - as in the above example. The organism filter
uses fuzzy matching, so --organism homo would also achieve a similar filtered list.

Generating binary predictions

The following code will generate binary predictions at 0.1 and 1μM for all human targets,
at a threshold of 0.5 (the compound was more often predicted active compared to inactive):

$ python $PV3/predict.py -f test.smi --organism "Homo sapiens" -b 0.1,1 -p 0.5

The threshold can be increased to increase the confidence in the prediction.

Note

These probabilities are different from PIDGIN version 2 [https://github.com/lhm30/PIDGINv2] in that they have not been
Platt-scaled, since this increased the number of false positives.

Decreasing applicability domain (AD) filter

To reduce the stringency in the AD filter, the --ad parameter (defulat:90) can be
reduced, as in the following snippet:

$ python $PV3/predict.py -f test.smi --organism "Homo sapiens" -b 1 -p 0.5 --ad 60

In this case, the threshold for the applicability domain weights calculated across the
targets has been reduced from 90% to 60%, and thus compounds that are further from the
AD are now accepted.

Outputting the AD results

To following snippet calculates the weights for each of the input compounds and outputs
their corresponding percentile value, so that a user can view the matrix of percentiles
for each compound and accept/reject predictions at a percentile threshold without the need
to re-run predictions:

$ python $PV3/predict.py -f test.smi --organism "Homo sapiens" -b 1 --percentile

Silencing the AD filter

To following snippet would therefore turn off the AD filter, since all predictions are
accepted:

$ python $PV3/predict.py -f test.smi --organism "Homo sapiens" -b 1 --ad 0

Combining model filters

If the user is interested in a given target class (for example “Lipase”) then the
following can be used:

$ python $PV3/predict.py -f test.smi --organism "Homo sapiens" --target_class Lipase

Filters can be combined, for instance:

$ python $PV3/predict.py -f test.smi --organism "Homo sapiens" --target_class GPCR --min_size 25 --performance_filter tsscv,prauc,0.7

would filter human models for GPCRs with a minimum number of 25 actives in the training
set and with a minimum precision-recall AUC (PR-AUC) performance of 0.7 during time-series
split cross validation (TSSCV).

Additional criteria can be added, for instance:

$ python $PV3/predict.py -f test.smi --organism "Rattus" -b 0.1,1 -p 0.5 --min_size 50 --se_filter --performance_filter l50po,bedroc,0.8

would filter rat models that did not require Sphere Exclusion (SE) (i.e. sufficient number
of inactives available) and a minimum number of 50 actives in the training set, with a
minimum BEDROC performance of 0.8 during leave 50% of ChEMBL publications in the training
data out over 4-fold cross validation (L50PO) to produce a binary matrix of predictions
at a probability cut-off of 0.5 and for models trained with bioactivity data at a
threshold of 0.1 & 1.01μM.

Extended functionality

This tutorial assumes the PIDGINv3 repository is located at $PV3.

The input file named test.smi is used for these examples

test.smi

COc1cc2c3CN4CCC[C@H]4[C@@H](O)c3c5ccc(O)cc5c2cc1OC CompoundID1
COc1cc2c3CN4CCC[C@H]4[C@@H](O)c3c5ccc(O)c(OC)c5c2cc1OC CompoundID2

Generating transposed predictions

The following code will output the RF probabilities at 10μM for all human targets to a
transposed file:

$ python $PV3/predict.py -f test.smi --organism "Homo sapiens" -b 10 --transpose

This script outputs the RF output from each of the Random Forest classifiers across the
targets for the all compounds into a probability matrix, where the rows are compounds
and the columns are targets.

Increasing trees and getting the standard dev. for input compounds

The following snippet will increase the minimum number of RF trees to 250 for all 0.1μM
ligase targets and then calculate the standard deviation of the predictions across the 250
trees in the forests across the filtered targets:

$ python $PV3/predict.py -f test.smi --ntrees 250 --target_class Ligase --std_dev

Note

The max number of trees when generating the models was set to 250. An algorithm to
search for the optimal trees was performed as follows: 1. start at 90 trees and
calculate the out-of-bag error (OOB) for the forest. 2. Increase the trees by 10 and
calculate difference in OOB score. 3. Repeat until 1 minute of train time is reached
or there was no performance gain on two trees incement occasions (test for convergence)
or a maximum of 250 trees is reached.

Annotating predictions with known activity

The probabilities output are clipped between 0.001 and 0.999, so that a perfect
score of 0.0 and 1.0 is not obtained from the RFs. This behaviour affords the explicit
annotation of duplicate bioactivity data between input compounds and the training set by
specifying known inactives with a score of 0.0 and actives with 1.0. To activate
this functionality use the following snippet:

$ python $PV3/predict.py -f test.smi --organism Drosophila -b 100 --known_flag

which would provide predictions for all Drosophila targets with a 100μM cut-off, and would
calculate overlap between input compounds and the training set and annotate these instead
of providing predictions.

Note

This setting increases latency since every input compound has to be compared for
perfect Tanimoto coefficient (Tc) similarity of 1.0 against every training
compound.

Enrichment Predictions

This tutorial assumes the PIDGINv3 repository is located at $PV3 and is concerned with
the script predict_enriched.py

This script calculates target prediction enrichment (using Fishers’ t-test) between two
input SMILES/SDF files as in 1. Target predictions are extended with NCBI Biosystems
pathways and DisGeNET diseases. Pathway or disease-gene association enrichment
(using chi-square test) enrichment is calculated for the two input SMILES/SDF files.

The approach is used to annotate which targets/pathways/diseases are
statistically associated between two compound sets given their input SMILES/SDF files.
This analysis is important since a (predicted) target is not necessarily responsible for
eliciting an observed mechanism-of-action. Some target prediction models also behave
promiscuously, due to biases in training data (chemical space) and the nature of the
target.

The analysis must use a cut-off for the probability of activity from the random forest
for each target. Predictions are generated for the models using the reliability-density
neighbourhood Applicability Domain (AD) analysis by Aniceto from:
doi.org/10.1186/s13321-016-0182-y

biosystems.txt contains pathway data from the NCBI biosystems used to annotate target
predictions. Pathway results can be filtered by source (e.g. KEGG/Reactome/GO) afterward.

DisGeNET_diseases.txt contains disease data used to annotate target predictions.
DisGeNET gene-disease score takes into account the number and type of sources (level of
curation, organisms), and the number of publications supporting the association. The score
ranges from 0 to 1 in accordance to increasing confidence in annotations, resepctively. A
DisGeNET_threshold can be supplied at runtime when annotating predictions with diseases
(0.06 threshold applied by default, which includes associations from curated
sources/animal models supporting the association or reported in 20-200 papers). More info
on the score here: http://disgenet.org/web/DisGeNET/menu/dbinfo#score

List of available arguments

To see all available options, run

$ python $PV3/predict_enriched.py -h
Usage: predict_enriched.py [options]

Options:
 -h, --help show this help message and exit
 --f1=FILE Firest input smiles or sdf file (required)
 --f2=FILE Second input smiles or sdf file (required)
 -d DELIM, --smiles_delim=DELIM
 Input file (smiles) delimiter char (default: white
 space ' ')
 --smiles_column=SMICOL
 Input file (smiles) delimiter column (default: 0)
 --smiles_id_column=IDCOL
 Input file (smiles) ID column (default: 1)
 -o FILE Optional output prediction file name
 -n NCORES, --ncores=NCORES
 No. cores (default: 1)
 -b BIOACTIVITY, --bioactivity=BIOACTIVITY
 Bioactivity Um threshold (required). Use either
 100/10/1/0.1 (default:10)
 -p PROBA, --proba=PROBA
 RF probability threshold (default: None)
 --ad=AD Applicability Domain (AD) filter using percentile of
 weights [float]. Default: 90 (integer for percentile)
 --known_flag Set known activities (annotate duplicates betweem
 input to train with correct label)
 --orthologues Set to use orthologue bioactivity data in model
 generation
 --organism=ORGANISM Organism filter (multiple can be specified using
 commas ',')
 --target_class=TARGETCLASS
 Target classification filter
 --min_size=MINSIZE Minimum number of actives used in model generation
 (default: 10)
 --performance_filter=P_FILT
 Comma-seperated performance filtering using following
 nomenclature: validation_set[tsscv,l50so,l50po],metric
 [bedroc,roc,prauc,brier],performance_threshold[float].
 E.g 'tsscv,bedroc,0.5'
 --se_filter Optional setting to restrict to models which do not
 require Sphere Exclusion (SE)
 --training_log Optional setting to add training_details to the
 prediction file (large increase in output file size)
 --ntrees=NTREES Specify the minimum number of trees for warm-start
 random forest models (N.B Potential large
 latency/memory cost)
 --preprocess_off Turn off preprocessing using the flatkinson (eTox)
 standardizer (github.com/flatkinson/standardiser),
 size filter (100 >= Mw >= 1000 and organic mol check
 (C count >= 1)
 --dgn=DGN_THRESHOLD DisGeNET score threshold (default: 0.06)

Generating enrichment predictions

In this example, we will work with a two SMILES input files, comprising cytotoxic
compounds in the file named cytotox_library.smi and (putative) non-toxic compounds in
the file named nontoxic_background.smi. Both are located in the examples directory.

The corresponding top 5 SMILES strings are:

cytotox_library.smi

C1Cc2cc3OCOc3c4c5ccccc5C[C@@H](N1)c24
[Cl-].COc1ccc2cc3c4cc5OCOc5cc4CC[n+]3cc2c1OC
COc1cc2c3CN4CCC[C@H]4[C@@H](O)c3c5ccc(O)cc5c2cc1OC
COc1cc2c3CN4CCC[C@H]4[C@@H](O)c3c5ccc(O)c(OC)c5c2cc1OC
C[C@H](CCC(=O)[C@@H](C)[C@H]1[C@H](C[C@H]2[C@@H]3CC[C@H]4C[C@H](CC[C@]4(C)[C@H]3CC(=O)[C@]12C)OC(=O)C)OC(=O)C)CO[C@@H]5O[C@H](CO)[C@@H](O)[C@H](O)[C@H]5O

and

nontoxic_background.smi

CC12CC3CC(C)(C1)CC(C3)(C2)NCc1ccccc1OCc1ccccc1F
CCCn1ccnc1C(=O)c1cc2ccccc2s1
Cc1nn(C)c(C)c1S(=O)(=O)NC1CCCCC1N
CC(C)CN(CC(C)C)C(=O)c1ccc(nc1C)C(F)(F)F
CC1CCc2c(C1)sc1nc(CN3CCOCC3)nc(Oc3ccccc3F)c21

The following code will generate cow target prediction enrichment at 1μM (with lenient AD
filters of 30 percentiles and probability of activity cut-off of 0.45) along with enriched
pathways and diseases (0.06 score threshold) for the cytotoxic compounds, when compared to
the non-toxic compounds.

$ python $PV3/predict_enriched.py --f1 cytotox_library.smi --f2 nontoxic_background.smi --organism "Bos taurus" -b 1 -p 0.45 --ad 30 -n 4

Three files are output for the target, pathway and disease enrichment calculations, with
the naming convention:

[f1]_vs[f2]_out_[disease/pathway]_predictions_enriched[timestamp].txt

The rows in each file correspond to the ranked enriched list of targets/pathways/diseases
that are more statistically associated with the first SMILES/SDF file (--f1) of
(e.g. cytotoxic) compounds. A higher Odd’s Ratio (column Odds_Ratio) or Risk Ratio
(Risk_Ratio) indicates a larger degree of enrichment for a given
target/pathway/disease compared to the second input --f2 (nontoxic) compound set.

The output has columns for the number of compound predictions (column
[f1/f2]_[In]Actives_[probability_activity]) and the associated percentage
Percent_[f1/f2]_[In]Actives_[probability_activity]) of compounds with that prediction.

The Fishers or Chi-squared p-values are provided ([Fishers_Test/Chisquared]_P_Value)
including the Benjamini & Hochberg corrected values in the column named
[Fishers_Test/Chisquared]_P_Value_Corrected. The output should be filtered for a
given preference.

The percentage NaN predictions (compounds outside the Applicability Domain (AD) filter
that were not given an active/inactive target prediction) are also provided in the column
entitled [f1/f2]_Proportion_Nan_Predictions_[ad].

Note

Please note that the Odd’s and Risk ratios are implemented in a different way to the
previous version of PIDGIN. For this version, larger numbers indicate larger
enrichments.

In this example, there are six targets with a corrected p-value less than 0.05 with a Odds
or Risk ratio greater than 1.0. All targets have known links to cytotoxicity, for example
three are related to Tublin with known mechanisms to cytotoxicity (via cytoskeletal
machinery).

More complicated example

Target/pathway/disease enrichment analysis can be combined with all model filters outlined
in the previous section “Getting started”.

For example, the following code:

$ python $PV3/predict_enriched.py --f1 cytotox_library.smi --f2 nontoxic_background.smi --organism Drosophila -b 100 --known_flag --ad 0 -n 4 -p 0.8 --min_size 50 --se_filter --performance_filter l50po,bedroc,0.8

would filter for Drosophila models that did not require Sphere Exlusion (SE) (i.e. sufficient number of inactives available) and a minimum number of 50 actives in the training set, with a minimum BEDROC performance of 0.8 for leave out 50% of ChEMBL publications from training data over 4-fold cross validation (L50PO), to produce enrichment predictions at a 0.8 probability cut-off at a threshold of 100μM, with the Applicability Domain (AD) filter silenced and where known activities (in ChEMBL or PubChem) are set.

References

	1

	Mervin, L H., et al. Understanding Cytotoxicity and Cytostaticity in a High-Throughput Screening Collection. ACS Chem. Biol. 11: 11 (2016) [image: mervin2016_doi] [https://doi.org/10.1021/acschembio.6b00538]

Developer Notes

Contributions to PIDGINv3 are welcome.

The following documentation is designed to aid
developers contribute code and new functionaility.

Warnings and Errors

	MolFromSmilesError

	is raised due to “None” from Chem.MolFromSmiles when importing user mols

	PreprocessViolation

	is raised due to preprocess violation when applied to input molecules

	SdfNoneMolError

	raised due to “None” mol during enumeration through Chem.SDMolSupplier

Note

Rdkit does not generate warning when enumerating through MolSupplier
so this check is performed. Future work aims to enable parallel mol
generation from SDFiles (see to do)

Contributing Code

Please submit any issues to the issue tracker [https://github.com/lhm30/PIDGINv3/issues] to enable other developers
to contribute to the project and reduce work load.

Documentation Usage

Coming soon…

	Parallel SDF import

	Enrichment anaylsis for two files

	Detailed similarity to training set analysis

	3D E3FP [https://github.com/keiserlab/e3fp] fingerprints

Index

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Prediction IncluDinG INactivity (PIDGIN) Version 3

 		
 Overview of PIDGINv3

 		
 Introduction

 		
 Contributing

 		
 License

 		
 Citing PIDGIN

 		
 References

 		
 Setup and Installation

 		
 Required dependencies

 		
 Install with Conda

 		
 Filetree structure

 		
 Usage and Examples

 		
 Command Line Arguments

 		
 List of available arguments

 		
 Detailed explanations for the more complicated arguments

 		
 Getting started

 		
 Generating predictions for human targets

 		
 Generating binary predictions

 		
 Decreasing applicability domain (AD) filter

 		
 Outputting the AD results

 		
 Silencing the AD filter

 		
 Combining model filters

 		
 Extended functionality

 		
 Generating transposed predictions

 		
 Increasing trees and getting the standard dev. for input compounds

 		
 Annotating predictions with known activity

 		
 Enrichment Predictions

 		
 List of available arguments

 		
 Generating enrichment predictions

 		
 More complicated example

 		
 References

 		
 Developer Notes

 		
 Warnings and Errors

 		
 Contributing Code

 		
 Documentation Usage

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

